47/0NS

GENE FOR

GENERATIONS

GENERATIC FOR

EU Taxonomy Report 2023

Content

1. Introduction

objectives:

- 1. Climate change mitigation
- 3. The sustainable use and protection of water and marine resources
- 5. Pollution prevention and control

Environmental objectives 3-6 were adopted in the EU in June 2023, through the Commission Delegated Regulations of June 2023, (EU) 2023/2486 and (EU) 2023/2485. In addition, amendments to Delegated Regulation (EU) 2021/2139 for the environmental objectives 1 and 2 were also adopted as of June 2023. Due to delays in the legislative process in the European Economic Area, the June 2023 regulations did not enter into force in Norway in 2023. The Norwegian Ministry of Finance has communicated that Norwegian undertakings are encouraged, but not required, to report on the environmental objectives 3-6 for the financial year of 2023. Only climate change mitigation and climate change adaptation following Commission Delegated Regulation (EU) 2020/852 are required for the 2023 reporting in Norway. However, considering the implementation in the EU and the encouragement from the Norwegian Ministry of Finance, AFK has chosen to include environmental objectives 3-6, in accordance with the Commission Delegated Regulations of June 2023. AFK reports on eligibility and alignment for environmental objectives 1 and 2 following Commission Delegated Regulation (EU) 2020/852 and on eligibility for economic activities adopted by the EU as of June 2023. Additionally, one of AFK's portfolio companies have chosen to report alignment on one of their activities contributing to water and marine resources.

2. Results and Initiatives in 2023

We are proud to report on all six environmental objectives of the EU Taxonomy. Arendals Fossekompani's portfolio contribute to multiple environmental objectives. covering climate change mitigation, climate change adaptation, and water and marine resources. Further, we recognize that one of AFK's main contributions going forward may be through enabling others in the transition, through activities that have potential to be enabling.

Throughout 2023, AFK has developed its reporting on the EU Taxonomy in line with the developments and new guidance from the European Commission regarding the EU Taxonomy Regulation. This has also led to strengthened understanding of the EU Taxonomy's definitions of the KPIs.

This year's reporting show stable developments of the KPIs compared to last year. Aligned turnover is largely consistent, with a small increase of 0.3%. Eligible, not aligned turnover has seen an increase of roughly 1.3%. Aligned, and eligible, not aligned CapEx have seen an increase of 12.9% and 1%, respectively. We are pleased to observe that the capital expenditures across AFKs portfolio are yielding tangible results that are reflected in the EU Taxonomy score. Both aligned, and eligible, not aligned OpEx see decreases compared to the voluntary reporting in 2022. These changes highlight the improvements made to the calculation methodology in the

1.	Introduction	3
2.	Results and Initiatives in 2023	3
3.	Scope	5
4.	Process	6
5.	Assessments	28
6.	Minimum Social Safeguards	28
7.	Accounting Policies and Contextual	
	Information About the KPIs	29
8.	Future Work	32

The EU Taxonomy aims to scale up sustainable investments and avoid greenwashing by defining a common language and understanding of sustainable activities. As part of the European Union's Green Deal, the EU Taxonomy is a classification system for sustainable economic activities, consisting of the following six environmental

- 2. Climate change adaptation
- 4. The transition to a circular economy
- 6. The protection and restoration of biodiversity and ecosystems

2023 report, driven by a strengthened understanding of the EU Taxonomy's OpEx definition. For further explanation of the KPIs and the relevant accounting policies, see chapter 7.

The high percentage of eligible activities reflects the great potential in our portfolio companies. Our goal is to further increase both eligible and aligned reporting in the years to come.

EU TAXONOMY ELIGIBILITY AND ALIGNMENT

AFK's portfolio companies' show great diversity, with eligible activities within a specter of sectors and environmental objectives. Summarized, the portfolio companies' eligible and aligned economic activities can be listed as follows:

ECONOMIC ACTIVITIES IN THE PORTFOLIO

Environmental objective	Econ in the	omic activity as defined E EU Taxonomy	Transitional/ enabling	Aligned/eligible, not aligned	Relevant companies
Climate change	4.9	Transmission and distribution of electricity	Enabling	Aligned	Volue
mitigation	4.5	Electricity generation from hydropower		Aligned	AFKVannkraft
	3.6	Manufacture of other low carbon technologies	Enabling	Aligned	TEKNA
	3.6	Manufacture of other low carbon technologies	*	Eligible, not aligned	ENRX, TEKNA
	7.1	Construction of new buildings		Eligible, not aligned	AFK Property, Ampwell, ENRX
	7.7	Acquisition and ownership of buildings		Eligible, not aligned	AFK Property, Volue, ENRX
	8.2	Data-driven solutions for GHG emissions reductions	*	Eligible, not aligned	Volue, Alytic
	6.15	Infrastructure enabling low-carbon road transport and public transport	*	Eligible, not aligned	ENRX
	3.4	Manufacture of batteries	*	Eligible, not aligned	Ampwell
	4.10	Storage of electricity	*	Eligible, not aligned	Ampwell
	8.1	Data processing, hosting and related activities	**	Eligible, not aligned	Ampwell
	7.2	Renovation of existing buildings	**	Eligible, not aligned	AFK Vannkraft
Climate	7.2	Renovation of existing buildings		Aligned	AFK Vannkraft
change adaptation	8.2	Computer programming, consultancy and related activities		Eligible, not aligned	Volue
	9.1	Close to market research, development and innovation	*	Eligible, not aligned	Alytic
	14.1	Emergency services	*	Eligible, not aligned	NSSLGlobal
	7.1	Construction of new buildings		Eligible, not aligned	AFK Property
	4.5	Electricity generation from hydropower		Eligible, not aligned	AFK Vannkraft
Transition to a circular	3.1	Construction of new buildings		Eligible, not aligned	AFK Property, Ampwell, ENRX
economy	5.5	Product-as-a-service and other circular use- and result-oriented service models		Eligible, not aligned	NSSLGlobal
	5.2	Sale of spare parts		Eligible, not aligned	ENRX
	4.1	Provision of IT/OT data-driven solutions	*	Eligible, not aligned	Volue
	3.2	Renovation of existing buildings		Eligible, not aligned	AFK Vannkraft
Sustainable use and protection of water and marine resources	4.1	Provision of IT/OT data-driven solutions for leakage reduction	Enabling	Aligned	Volue
	*	Activities that have the potential to be enabling lassified as such since the technical screening of Activities that have the potential to be transition	, however are no criteria are not co nal, however are	t onsidered met. not	

classified as such since the technical screening criteria are not considered met.

3. Scope

All portfolio companies in the AFK group have been included in the reporting on the EU Taxonomy for 2023. We have not included joint ventures and associated companies, as they are not consolidated in the group's financial statements. Each portfolio company has identified their business activities and assessed each activity with regards to the EU Taxonomy economic activities within the scope of all six environmental objectives.

4. Process

The EU Taxonomy assessment has been conducted by each portfolio company, supported by a core team with representatives from AFK. Assessments have been performed in accordance with the structure of the EU Taxonomy, starting with eligibility assessments before assessing compliance with the criteria for substantial contribution and do no significant harm ("DNSH"). The minimum safeguards assessment has been conducted by AFK on group level, based on policies and procedures covering the AFK group. Eligible activities that meet the criteria for substantial contribution and DNSH, as well as the minimum safeguards, are reported as aligned. AFK reports the EU Taxonomy on an aggregate of portfolio companies. To ensure consistency in reporting and assessments of eligibility and alignment across the portfolio, the core AFK team has put in place reporting routines and guidelines for assessments.

In 2023 we performed a re-evaluation of the eligible activities from the 2022 reporting. Considering new acquisitions, activities for the four remaining environmental objectives adopted by the EU and FAQs published by the European Commission. Eligibility was assessed considering the portfolio companies' business activities against the economic activities defined in the EU Taxonomy. Relevant NACE-codes and activity descriptions for each economic activity were identified and examined. Vergia does not have any eligible economic activities since all activities and investments are through joint ventures and associated companies, and as such accounted for through the equity method.

The alignment process consists of assessing the criteria for substantial contribution and do no significant harm, as well as minimum safeguards. When assessing the technical screening criteria, we have experienced challenges within interpretations and best practice. Some of the criteria refer to EU-directives, that may not be, or is only partially adopted and implemented in Norway. Subsequently this may lead to requirements and thresholds not being provided.

5. Assessments

LIST OF ABBREVIATIONS

ABBREVIATION	DEFINITION
CCM	Climate change mitigation
CCA	Climate change adaptation
W&M	Sustainable use and protection of water and marine resources
CE	The transition to a circular economy
PP	Pollution prevention and control regarding use and presence of chemicals
B&E	Protection and restoration of biodiversity and ecosystems
DNSH	Do no significant harm

Economic activity Type of assessment Interpretation a

Eligibility	AFK Hydropower c and Flatenfoss, ge
Substantial contribution	Both plants are run ervoirs. As such, bo contribution criter
DNSH	CCA: Climate risk dance with Appen analysis conducted has been further o risks listed in appe solutions for the ide and implemented
	W&M: The Water F the Norwegian 'Var are required to co standards for wat have fish friendly t igation measures dependent of wate
	B&E: Environment an annual basis for permit. Mitigation constraints of the or near biodiversit been taken to acco ways. Measures an downstream at Bø dix D are considered
Eligibility	See description o CCM above. Addi ducted in line with been set up to imp activity's most sig
Substantial contribution	A climate risk asse with criteria, based formed at compar by analysing the pl activity level. Adap climate risks are o concession.
	The identified solur sectoral, and nation plan for implemen is in place. As of 2 mented to full exter sidered compliant to climate change
	Eligibility Eligibility Eligibility Substantial Contribution Substantial Contribution

and assessment	Conclusion
er operates the hydropower plants at Bøylefoss generating electricity from hydropower	Aligned
run-of-river plants and do not have artificial res- , both hydropower plants meet the substantial teria listed in letter a).	
sk assessment has been conducted in accor- bendix A. The assessment is based on a TCFD oted in 2021, performed at company level, which er developed in 2023 by analysing the physical opendix A at economic activity level. Adaptation e identified physical climate risks are considered ed as part of the concession.	
er Framework Directive is implemented through Vannforskriften', which both hydropower plants comply with. The directive follows European water management. Additionally, both plants ly turbines. As such, the criteria related to mit- res for impacts on water and species directly rater are considered met.	
ental impact assessments are carried out on s for both plants in relation to concession and on measures are implemented within the time he concession/permit. None of the plants are in rsity-sensitive areas. However, measures have ccommodate eels, should it return to the water- s are also in place to support salmon spawning Bøylefoss. As such, the criteria listed in appen- lered met.	
n of the activity in activity 4.5 contributing to dditionally, a climate risk assessment is con- vith Appendix A, and an expenditure plan has implement adaptation solutions to reduce the significant physical climate risks.	Eligible, not aligned
ssessment has been conducted in accordance sed on a TCFD analysis conducted in 2021, per- pany level. This was further developed in 2023 e physical risks listed in Appendix A at economic daptation solutions for the identified physical re considered and implemented as part of the	
olutions are consistent with the applicable local, ational adaptation plans and strategies, and a nentation of the identified adaptation solutions of 2023, these measures have yet to be imple- xtent. As such, the economic activity is not con- ant with the criteria for substantial contribution ge adaptation.	

7

	DNSH	The economic activity fulfils the DNSH criteria, however the activity will not be reported as aligned against the climate abange adoptation objective since the substantial contribution	7.2 Ren	ovation	Eligibility assessment	See eligibility description from activity 7.2 contributing to CCA above.	Eligible, not aligned
7.2 Renovation of existing buildings (CCA)	Eligibility Substantial contribution	 criteria is not met. For reference, the DNSH criteria are identical to those accounted for above in relation to climate change mitigation, except for the DNSH to CCM. The DNSH to CCM is considered met as the direct GHG of the electricity generation activity is lower than 270gCO₂e/kWh. AFK Hydropower are conducting façade rehabilitation at the Bøylefoss power plant. A climate risk assessment has also been carried out an the rehabilitation is considered eligible. The façade rehabilitation has implemented physical and non-physical adaptation solutions that substantially reduce the 	of existing buildings (CCM)		Substantial contribution	The renovation work complies with the definition for 'major ren- ovations' of buildings from Directive 2010/31/EU, as more than 25% of the surface of the building envelope underwent reno- vation in 2023. The Energy Performance of Buildings Directive (EPBD, 2010/31/EU) is not implemented in Norwegian law and the specific cost-optimal minimum energy performance requirements are therefore not known. Since the building is a cultural heritage and protected, there are restrictions on which measures AFK Hydropower can implement, affecting the potential for increasing the energy performance. Due to these limitations, AFK Hydropower have not assessed the renovation	
		most important physical climate risks material to the activity. The material climate risks are identified based on the list set out in Appendix A. For the screening of physical climate risks, three climate scenarios have been used: RCP1.2 & IEA Net Zero,			DNSH	The façade rehabilitation fulfills the DNSH criteria. However, the economic activity does not comply with the substantial contribution criteria and is therefore not reported as aligned.	
		RCP 4.5 and RCP 6.0As such, the economic activity fulfills the substantial contribution criteria. For this assessment, the risks have been assessed based on three time, borizons defined by	3.2 Ren	3.2 Renovation of existing buildings (CE)	Eligibility	See eligibility description from activity 7.2 contributing to CCA above.	Eligible, not aligned
		CSRD: Short-term (less than 1 year), medium-term (1-5 years) and long-term (more than 5 years). As such, the economic activity is considered aligned with the criteria for substantial contribution.	of ex build (CE)		Substantial contribution and DNSH	The technical screening criteria are not considered as report- ing on alignment is not a requirement for the environmental objective Transition to a circular economy, refer to section 1 Introduction.	
	DNSH CCM: The building is not dedicated to extraction, storage, transport or manufacture of fossil fuels.						
		 W&M: Not applicable, as there are no water appliances are installed. CE: The renovation follows standards and instructions set by a leading Nordic provider of circular solutions and waste management. The standards are in accordance with EU Construction and Demolition Waste Management Protocol and ensure that minimum 70% of the non-hazardous construction and demolition waste is prepared for reuse, recycling, or other material recovery. The renovation utilizes as much as possible of the original components and does only use recycled concrete. 	Eco	• C Prope	Type of assessment	Interpretation and assessment	Conclusion
			7.1 Con of no (CCI	struction ew buildings VI)	Eligibility	AFK Property is involved in the development of the residential building project Bryggebyen on own account, by bringing the financial means to realise the project for later sale and exe- cuting the work on a contract basis. Further, AFK Property is involved in the development of an annex to an existing com- mercial building at Bølevegen 4, financing the project on own account and operating on a contract basis.	Eligible, not aligned
		PP: All building components and materials used in the con- struction comply with the criteria set out in Appendix C. The majority of the products used are chalk, mortar, and mineral silicate paint. None of these or other products or instances used are in violation with EU REACH. All possible measures have been taken to reduce noise, dust, and pollutant emissions			Substantial contribution	The calculated Primary Energy Demand (PED) of the build- ings are not 10% lower than the defined threshold for nearly zero-energy building (NZEB) requirements, and the substantial contribution criteria is not considered met. Additional require- ments related to air-tightness and thermal integrity are not applicable as none of the buildings exceed 5000 m ² .	
		during the construction works. As such, the economic activity is considered aligned with the criteria for do no significant harm.			DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	

escription from activity 7.2 contributing to CCA	Eligible, not aligned
work complies with the definition for 'major ren- dings from Directive 2010/31/EU, as more than ace of the building envelope underwent reno- The Energy Performance of Buildings Directive I/EU) is not implemented in Norwegian law cost-optimal minimum energy performance re therefore not known. Since the building is age and protected, there are restrictions on a AFK Hydropower can implement, affecting the reasing the energy performance. Due to these Hydropower have not assessed the renovation th the substantial contribution requirement.	
abilitation fulfills the DNSH criteria. However, activity does not comply with the substantial teria and is therefore not reported as aligned.	
escription from activity 7.2 contributing to CCA	Eligible, not aligned
creening criteria are not considered as report- nt is not a requirement for the environmental ition to a circular economy, refer to section 1	

7.7

7.1 Construction of new buildings (CCA)	Eligibility	igibility See description of the activity "Bryggebyen" related to activity 7.1 regarding CCM above. As required by the Taxonomy, a cli- mate risk assessment has been carried out and an expenditure plan for adaptation solutions is implemented for Bryggebyen, in accordance with Appendix A. As a result, Bryggebyen is con- sidered eligible under climate change adaptation.	
	Substantial contribution	The economic activity is currently not considered aligned with all the technical screening criteria for substantial contribution to CCA.	
	DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	
7.1 Construction of new buildings (CCA)	Eligibility	See description of the activity "Bølevegen" related to activity 7.1 regarding CCM above. The climate risk assessment and expen- diture plan for Bølevegen complies with regional requirements but fell short of meeting the requirements of Appendix A. As a result, Bølevegen is not considered eligible under climate change adaptation.	
	Substantial contribution and DNSH	Since the economic activity is not considered eligible for the environmental objective Climate Change Adaptation, no fur- ther assessment of technical screening criteria has been car- ried out.	
3.1 Construction	Eligibility	See eligibility description from activity 7.1 regarding CCM above.	Eligible, not aligned
of new buildings (CE)	Substantial contribution and DNSH	The technical screening criteria are not considered as report- ing on alignment and is not a requirement for the environmen- tal objective Transition to a circular economy, refer to section 1 Introduction.	
7.7 Acquisition and ownership of buildings	Eligibility	AFK Property owns several properties and exercises own- ership of these real estates. This goes for the properties at Steinodden, Bedriftsveien 17, Gullknapp, Bølevegen 4, and Bryggebyen Vindholmen.	Eligible, not aligned
	Substantial contribution	None of the buildings have an Energy Performance Certificate (EPC) class A, nor are any of them within the 15% of the national or regional building stock expressed as operational Primary Energy Demand (PED) and the substantial contribution criteria is not considered met.	
	DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	

7.7	Eligibility	See de
Acquisition		Bedrift
and ownership		Vindhol
of buildings		The clir
(CCA)		propert
		a result
		climate
	Substantial	Since th
	contribution	environ
	and DNSH	ther ass

escription of the activities related to Steinodden, Not tsveien 17, Gullknapp, Bølevegen 4 and Bryggebyen eligible olmen for economic activity 7.7 regarding CCM above. imate risk assessment and expenditure plan for the ties does not meet the requirements of Appendix A. As , none of these buildings are considered eligible under e change adaptation.

he economic activity is not considered eligible for the nmental objective Climate Change Adaptation, no fursessment of technical screening criteria has been car-

ampwell

Economic activity	Type of assessment	Interpretation and assessment	Conclusion	Economic activity	Type of assessment	Interpretation and assessment	Conclusion
9.2 Close to market research, development and innovation (CCA)	Eligibility	Edge by Kontali provides a collection of seafood data, giving access to world-leading data insight with millions of data points 24/7. The platform offers expertise on a large variety of seafood species and industries, closely follow the value chains end to end. Covering global trends, detailed in-depth analy- ses and research. Kontali delivers reports to decision makers worldwide, both in private and public sectors.	Eligible, not aligned	3.4 Manufacture of batteries (CCM)	Eligibility	Ampwell's subsidiary Commeo GmbH is engaged in the man- ufacturing of energy storage and management solutions, uti- lizing lithium-ion battery technology with a focus on safety and modularity. The products cater to various industrial appli- cations, spanning from manufacturing to energy supply. This comprises the manufacture of rechargeable batteries, battery packs, accumulators, and associated components such as bat- tery cells, casings, and electronic components.	Eligible, not aligned
	Substantial contribution	Due to uncertainties regarding the technical screening criteria, the platform is considered not aligned. This specifically related to the adaptation criteria and the use of best available science.			Substantial contribution	The economic activity manufactures rechargeable batteries, battery packs and accumulators, including from secondary raw materials, that result in substantial GHG emission reductions in transport, stationary and off-grid energy storage and other industrial applications. However, it does not recycle end-of-life batteries. As a result, the activity is not aligned with the sub- stantial contribution criteria	
	Do no significant harm	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.					
9.1 Close to market research, development and innovation (CCM)	Eligibility	The Edge platform is not considered eligible for economic activity 9.1 contributing to Climate Change Mitigation, as it is not dedicated to reduction, avoidance or removal of GHG emis- sions.	Not eligible		DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	
	Substantial contribution and DNSH	Since the economic activity is not considered eligible for the environmental objective Climate Change Mitigation, no further assessment of technical screening criteria has been carried out.		3.4 Manufacture of batteries (CCA)	Eligibility	See description of the activity in 3.4 related to CCM above. A climate risk assessment and expenditure plan has not been conducted yet. As such, the activity is not considered eligible under climate change adaptation.	Not eligible
8.2 Data-driven solutions for GHG emissions reductions (CCM)	Eligibility	Veyt is the global insight business for all significant low carbon markets and renewable energy. Veyt's platform offers inde- pendent and neutral market intelligence, covering green cer- tificates for power and gas and carbon markets. The aim is to	Eligible, not aligned		Substantial contribution and DNSH	Since the economic activity is not considered eligible for the environmental objective Climate Change Adaptation, no fur- ther assessment of technical screening criteria has been car- ried out.	
		simplify these complex markets to make informed decisions and positively contribute to the global net-zero transformation, supporting firms by providing price benchmarking, insights and analytics. As such, the activity is predominantly aimed at the provision of data and analytics enabling GHG emission reductions.		8.1 E Data processing, hosting and related activities (CCM) 5	Eligibility	Ampwell's subsidiary Cellect provides solutions for energy storage in the renewable energy sector. The activity involves software for energy storage assets, hardware for on-site data control and acquisition, and battery system integration with the Cellect cloud.	Eligible, not aligned
	Substantial contribution	Veyt's solution substantial contributes to GHG emission reduc- tions by enabling the energy market to efficient source renew- able energy as the only source of their energy consumption. The documentation requirement regarding life-cycle GHG emissions calculation has not been fulfilled, hence the substan- tial contribution criteria is considered not met.			Substantial contribution	The economic activity is currently not considered compliant with the technical screening criteria for substantial contribu- tion. This primarily relates to uncertainties regarding criteria related to data centers, as Cellect neither owns or operates data centers, but uses cloud hosting companies. Cellect will continue the assessment and further develop its understand- ing of the criteria going forward.	
	DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.			DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	

alytic

N	V.

Economic activity	Type of assessment	Interpretation and as
3.6 Manufactureof other low carbon technologies (CCM)	Eligibility	Manufacturing of indu of applications; brazin ity enables customer processes and also er nologies.
	Substantial contribution	The purpose of the ap structure, durability, a high accuracy and rep nologies with traditio flame and gas. As of t no documentation on available at this point tion is the economica available at the marke
	DNSH	Since the economic a stantial contribution, a teria has not yet been
3.6 Manufacture of other low carbon technologies (CCA)	Eligibility	See description of the CCM above. The activi sions in production pro- carbon technologies. available to demonst life-cycle GHG emiss alternative in the indu eligible under the Clim
	Substantial contribution and DNSH	Since the economic a environmental object ther assessment of te ried out.
6.15 Infrastructure enabling low- carbon road transport and public transport (CCM)	Eligibility	Manufacturing of wire busses, heavy-duty v tation. Wireless char fer offers a higher ut increased safety, and charging solutions n cabling requirements
	Substantial contribution	The wireless charging trial vehicles and pub points for zero tailpin transport or storage of contribution are there
	DNSH	Since the economic a for all environmental o DNSH criteria has not

7.1 Construction of new buildings	Eligibility	Ampwell's subsidiary Commeo Property GmbH is involved in the development of a battery factory in Germany on own account.	Eligible, not aligned
(CCM)	Substantial contribution	The primary energy demand (PED) is 10% lower than the threshold for nearly-zero energy building (NZEB) require- ments in Germany, as outlined in the building's GEG certificate (German Building Energy Act). However, as a DGNB certifica- tion (Deutsche Gesellschaft für Nachhaltiges Bauen) was not commissioned from the outset, the activity does not meet all the criteria for substantial contribution.	
	DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	
3.1 Construction	Eligibility	See eligibility description from activity 7.1 regarding CCM above.	Eligible, not aligned
of new buildings CE) Substantial contribution The technical screening criteria are not considered as repor ing on alignment is not a requirement for the environment objective Transition to a circular economy, refer to section Introduction.			
7.1 Construction of new buildings (CCA)	Eligibility	See description for activity 7.1 related to Climate Change Mitigation above. A climate risk assessment and expenditure plan has not been conducted in accordance with the require- ments of the criteria . As such, the activity is not considered eligible under climate change adaptation.	Not eligible
	Substantial contribution and DNSH	Since the economic activity is not considered eligible for the environmental objective Climate Change Adaptation, no fur- ther assessment of technical screening criteria has been car- ried out.	
4.10 Storage of electricity (CCM)	Eligibility	Ampwell GmbH has invested in a small battery storage facility, contributing to both research and development of product and services and acting as a showcase for electric vehicle charging, specifically for trucks and HDVs.	Eligible, not aligned
	Substantial contribution	In 2023, the activities carried out were related to research and development at the facility used as a show case. As such, there has not been any commercial activity for operation of electric- ity storage and the substantial contribution criteria related to the operation of electricity storage were not considered met.	
	DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	
4.10 Storage of electricity (CCA)	Eligibility	See description related to the economic activity 4.10 for CCM above. A climate risk assessment and expenditure plan has not been conducted in accordance with the requirements of the criteria . As such, the activity is not considered eligible under climate change adaptation.	Not eligible
	Substantial contribution and DNSH	Since the economic activity is not considered eligible for the environmental objective Climate Change Adaptation, no fur- ther assessment of technical screening criteria has been car- ried out.	

and assessment	Conclusion
of induction power generators for a wide range brazing, welding, bonding and more. The activ- tomers to lower own emissions in production also enable manufacturing of low carbon tech-	Eligible, not aligned
the applications is to strengthen the material bility, and lifetime of metal components, all with nd repeatability, and replacing alternative tech- raditional methods such as manual work with As of today, the criteria are not yet fulfilled, as ion on the life-cycle GHG emissions savings are spoint. However, the assumption is that induc- iomically best solution for several applications market.	
omic activity does not fulfill the criteria for sub- ution, a complete assessment of the DNSH cri- t been carried out.	
of the activity related to activity 3.6 regarding e activity enables customers to lower own emis- tion processes and enable manufacturing of low ogies. Yet, there is currently no documentation monstrate ENRX's technology to have lower emissions compared to the best performing the industry. Hence, the activity is not considered the Climate Change Adaptation objective.	Not eligible
omic activity is not considered eligible for the objective Climate Change Adaptation, no fur- nt of technical screening criteria has been car-	
of wireless charging systems for electric-driven duty vehicles, and ferries for public transpor- s charging based on inductive power trans- her utilization of the available charging time, y, and unprecedented system reliability. ENRX's ions may result in less maintenance and no ments.	Eligible, not aligned
harging systems for busses, heavy-duty indus- nd public ferries are used as electric charging tailpipe emissions and are not dedicated to prage of fossil fuels. The criteria for substantial e therefore considered met.	
omic activity does not fulfill the DNSH criteria ental objectives, a complete assessment of the as not yet been carried out.	

Ν	S	S	L	G	0	ba	
						Ju	

Type of assessment	Interpretation an
Eligibility	The communicat deployment in are munication syste protection respo operating emerge
Substantial contribution and DNSH	The technical s reporting on align added through the 2023/2485, refer
Eligibility	VSAT Leasing Ord is refurbished for model is to a larg contracts, provid securing a signific
Substantial contribution and DNSH	The technical scr ing on alignment objective Transit Introduction.
	Type of assessment Eligibility Substantial contribution and DNSH Eligibility Substantial contribution and DNSH

5.2 Sale of spare parts (CE)	Eligibility	Sale of spare parts to support lifetime extensions of ENRX's systems. In addition to refurbishing and upgrading existing installations, spare parts are sold to exceed baseline up to 25 years.	Eligible, not aligned	
	Substantial contribution and DNSH	The technical screening criteria are not considered as report- ing on alignment is not a requirement for the environmental objective Transition to a circular economy, refer to section 1 Introduction.		
7.1 Construction	Eligibility	ENRX is involved in the development of an annex to the existing office building at Bølevegen 4, on own account.	Eligible, not aligned	
of new buildings (CCM)	Substantial contribution and DNSH	AFK Property is engaged in the construction. Refer to assess- ment provided for activity 7.1 Construction of new buildings in the section for AFK Property.		
7.1 Construction of new buildings (CCA)	Eligibility	See description of the activity 7.1 regarding CCM above. The climate risk assessment and expenditure plan for the annex at Bølevegen 4 does not meet the requirements of Appendix A. As a result, the activity is not considered eligible under climate change adaptation.	Eligible, not aligned	
	Substantial contribution and DNSH	AFK Property is engaged in the construction. Refer to assess- ment provided for activity 7.1 Construction of new buildings in the section for AFK Property.		
3.1	Eligibility	See activity description of activity 7.1 regarding CCM above.	Eligible,	
Construction of new buildings (CE)	Substantial contribution and DNSH	AFK Property is engaged in the construction. Refer to assess- ment provided for activity 7.1 Construction of new buildings in the section for AFK Property.	er to assess- buildings in	
7.7 Acquisition and ownership of buildings (CCM)	Eligibility	ENRX leases Bølevegen 4, consisting of offices, production facility and storage space. The property is formally owned by AFK Property but is leased through a bare-house agreement where ENRX is responsible for maintenance and repair and risks related to the building. ENRX is considered eligible as a right-of-use asset is recognized in the balance sheet in accor- dance with IFRS 16.	Eligible, not aligned	
	Substantial contribution and DNSH	AFK Property have performed the alignment assessment as they are the legal owners of the property. Refer to assessment provided for activity 7.7 Acquisition and ownership of buildings in the section for AFK Property.		
7.7 Acquisition and ownership of buildings (CCA)	Eligibility	See activity description of activity 7.7 regarding CCM above. The climate risk assessment and expenditure plan for Bølevegen complies with regional requirements but fell short of meeting the requirements of Appendix A. As a result, Bølevegen is not considered eligible under climate change adaptation.	Not eligible	
	Substantial contribution and DNSH	AFK Property have performed the alignment assessment as they are the legal owners of the property. Refer to assessment provided for activity 7.7 Acquisition and ownership of buildings in the section for AFK Property.		

and assessment	Conclusion
ation system "Airtime" supports rapid mobile areas of natural disaster and conflict. The com- tem is considered eligible as part of technical sonse and assistance to a climate hazard by gency communication system.	Eligible, not assessed for alignment
screening criteria are not considered as gnment is not a requirement for the activities the Commission Delegated Regulation (EU) er to section 1 Introduction	
rders is a take back program where equipment or resale, rental, or support stock. The revenue rge degree based on multi-year subscription iding customers with access to products and ficant degree of recurring revenues.	Eligible, not assessed for alignment
creening criteria are not considered as report- nt is not a requirement for the environmental ition to a circular economy, refer to section 1	

volue				4.9 Transmission	Eligibility	Volue's Power panies to desi
Economic activity	Type of assessment	Interpretation and assessment	Conclusion	and distribution		grid in real-tim
4.1 Provision of IT/OT data- driven solutions for leakage	Eligibility	The software solution segment "Water and communities" pro- vides a complete overview of the water supply network and its condition, enabling municipalities and water companies to be data-driven and to control, manage and mitigate leakages in the water supply systems.	Aligned	(CCM)		connection se not directly tr activities of Vo stantial contril following". As s
reduction (W&M)	Substantial contribution	As a holistic water tool that gives the user a complete overview of the water supply system and capabilities to control, manage, reduce and mitigate water leakages, "Water and communities" comply with the technical screening criteria:			Substantial contribution	Volue does not tion infrastruc ers' power grid the Norwegiar
		(a) Monitoring systems including holistic IT/OT suites/tools, or add-ons/extensions to such tools that provide identification, tracking and tracing water leakage				Volue delivers bility and obse integration of
		(b) IT/OT solutions, or add-ons/extensions to such tools, that provide controlling, managing and mitigating water leakage				ment 2 (e) inst bility and obse
		In the risk analysis, it has been identified that the use of Volue's solution does not lead to any risks related to water quality or water stress. Nor does the use of Volue's software provide any				the developme where advance equipment.
		risks that may prevent the operator of achieving good water status and good ecological potential.			DNSH	CCA: Climate r appendix A. Th
	Do no significant harm	CCA: Climate risk assessment is performed in accordance with appendix A. The assessment is based on a TCFD analysis con- ducted in 2021, performed at company level, which has been further developed in 2023 by analysing the physical risks listed				further develo in appendix A climate risks h
		in appendix A at economic activity level. No material physical climate risks have been identified.				TCE: Waste re ment used in th
		TCE: The primary end-of-life waste is the computer hardware used in the development and management of the software. Volue has an agreement with an electronic recycling service provider, who works in accordance with EU WEEE Directive.				agreement wi of all electric: reflected in fir each product.
		P&C: The equipment used for "Water and Communities" meet the requirements set out in the Directive 2009/125/EC of the				PP: Considere high voltage lir
		European Parliament and of the Council for servers and data storage products. No equipment used contain any of the restricted substances listed in Annex II to Directive 2011/65/EU.				B&E: Conside Environmenta dance with Din
4.1 Provision of IT/OT data- driven solutions (CE)	Eligibility	The construction software "Gemini Terrain" is a design and engineering software that supports eco-design of infrastruc- ture. The software is used for terrain calculations which can help the user limit the damage to nature and for mass calcula- tions ensuring that the infrastructure is designed in an efficient way. Gemini Terrain is considered eligible through design and engineering software supporting the eco-design of products, equipment, and infrastructure, including waste management and resource efficiency.	Eligible, not aligned			Directive 2011 project is listed listed in the An
	Substantial contribution and DNSH	The technical screening criteria are not considered as report- ing on alignment is not a requirement for the environmental objective Transition to a circular economy, refer to section 1 Introduction.				

r Grid Software is used by electricity grid com- Aligned ign, maintain, analyze, and monitor their power ne. The software solution includes grid documenta management, grid planning & analytics, grid ervices and grid operation. Although Volue does ansmit or distribute electricity, the economic olue's Power Grid Software are listed in the subbution criteria, under "2. The activity is one of the such, Power Grid Software is considered eligible.

t directly operate the transmission and distribucture or equipment. However, all Volue's customl is a part of the interconnected control areas of Power Grid.

advanced software that increases the controllarvability of the electricity system and enables the f renewable energy sources in line with requiretallation of equipment to increase the controllaervability of the electricity system and to enable ent and integration of renewable energy sources, ced software in this context is considered as

isk assessment is performed in accordance with ne assessment is based on a TCFD analysis con-21, performed at company level, which has been pped in 2023 by analysing the physical risks listed at economic activity level. No material physical nave been identified.

garding Power Grid Software is electrical equiphe development. Volue has a waste management ith a third party, who ensures maximal reusage al waste. Volue's waste management plan is nancial projections on a higher level and not for

ed not applicable as the activity do not include nes.

ered not applicable. Appendix D requires an I Impact Assessment (EIA) or screening in accorrective 2011/92/EU. According to Article 2(4) in 1/92/EU, the EIA must only be conducted if the d in Annex II of the Directive. As the activity is not nnex, an EIA has not been completed.

4.9 Transmission and distribution of electricity (CCM)	Eligibility	The Industrial IoT Renewables segment (Scanmatic) lever- ages state-of-the-art expertise in sensor technology, data processing, data communication, and power supply to create and deliver specialized instrumentation and communication solutions tailored for the renewable energy industry. Although	Aligned	4.9 Transmission and distribution of electricity (CCA)	Eligibility	See description o Renewables" rela required by the Ta carried out. The a change adaptatio
		Volue does not directly transmit or distribute electricity, the economic activities of the Renewables segment are listed in the substantial contribution criteria, under "2. The activity is one of the following". As such, "Industrial IoT Renewables" is considered eligible.			Substantial contribution	No material physi plans for adaptat Since Volue deliv implementing sol
	Substantial contribution	Volue does not directly operate the transmission and distri- bution infrastructure or equipment. However, all Volue's cus- tomers' power grid is a part of the interconnected European System.				tion plant does n such, economic a with all the techni tion to CCA pendi
		"Industrial IoT Renewables" deliver sensors and measurement tools including meteorological sensors for forecasting renew- able production, which enables development and integration of renewable energy sources in line with requirement 2 (e).			DNSH	Since the econon stantial contribut teria has not yet b
	DNSH	CCA: Climate risk assessment is performed in accordance with appendix A. The assessment is based on a TCFD analysis con- ducted in 2021, performed at company level, which has been further developed in 2023 by analysing the physical risks listed in appendix A at economic activity level. No material physical climate risks have been identified.	8.2 Data-driven solutions for GHG emissions reductions (CCM)	Eligibility	Volue's Energy P lect, transmit, and of electricity. The energy productio thereby enabling used to plan wate efficient use of er	
		TCE: The activity fulfils the requirements of Chapter 7 (packag- ing) and Chapter 3 (batteries) of the Waste Regulations, and as such, a waste management plan ensuring maximal reuse and			Substantial contribution	The documentat emissions calcula tial contribution c
		recycling is in place. Contractual agreements are considered fulfilled through membership in RENAS. Further, ISO 140001 certification have been approved and certified and the waste management plan will be reflected in the certificate. As such		Do no significant harm	Since the econom stantial contribut teria has not yet b	
		 the activity is considered compliant with the criteria. P&C: Considered not applicable as the activity does not include high voltage lines. B&E: Considered not applicable. Appendix D requires an Environmental Impact Assessment (EIA) or screening in accordance with Directive 2011/92/EU. According to Article 2(4) in Directive 2011/92/EU, the EIA must only be conducted if the project is listed in Annex II of the Directive. As the activity is not 	red compliant with the criteria.	8.2 Computer programming, consultancy and related services (CCA)	Eligibility	Volue's Industrial measure weather pollution levels. B grate computer h nologies, Industri field of informatio assessment did r such no expendit set up.
		listed in the Annex, an EIA has not been completed.			Substantial contribution	Volue performed framework in 20 further developed tial contribution c
					DNSH	Since the econon stantial contribut

20

See description of the activities "Power grid" and "Industrial IoT Renewables" related to activity 4.9 regarding CCM above. As required by the Taxonomy, a climate risk assessment has been carried out. The activities are considered eligible under climate change adaptation.	Eligible, not aligned	
No material physical risks have been identified and expenditure plans for adaptation solutions are therefore not implemented. Since Volue delivers software solutions, the requirements of implementing solutions to reduce physical climate risks related to the creation or expansion of connections to a power produc- tion plant does not match the activities being performed. As such, economic activities are currently not considered aligned with all the technical screening criteria for substantial contribu- tion to CCA pending a better understanding of the requirement.		
Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.		
Volue's Energy Production Planning Software is used to col- lect, transmit, and store data to optimize production planning of electricity. The software enables the producers to maximize energy production from their assets in the most efficient way, thereby enabling GHG emission reductions. The software is used to plan water inflow and power demand and achieve more efficient use of energy and water.	Eligible, not aligned	
The documentation requirement regarding life-cycle GHG emissions calculation has not been fulfilled, hence the substan- tial contribution criteria is considered not met.		
Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.		
Volue's Industrial IoT Environment segment offers systems to measure weather conditions, air quality, water quality and air pollution levels. By planning and designing systems that inte- grate computer hardware, software and communication tech- nologies, Industrial IoT Environment provides expertise in the field of information technologies. The performed climate risk assessment did not identify any significant physical risks and such no expenditure plan for adaptation solutions have been set up.	Eligible, not aligned	
Volue performed a climate risk assessment based on the TCFD framework in 2021. However, since the analysis has not been further developed for Industrial IoT Environment, the substantial contribution criteria are not considered met.		
Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.		

7.7 Acquisition and ownership of buildings (CCM)	Eligibility	Volue leases Bedriftsveien 17. The property is formally owned by AFK Propety but is leased through a bare-house agreement where Volue is responsible for maintenance and repair and risks related to the building. Volue is considered eligible as a right-of-use asset is recognized in the balance sheet in accor- dance with IFRS 16. Leased offices where Volue does not lease entire buildings are not considered eligible. Volue will continue the assessment in 2024, pending more guidance on the eligi- bility of the activity.	Eligible, not aligned	
	Substantial contribution and DNSH	AFK Property have performed the alignment assessment as they are the legal owners of the property. Refer to assessment provided for activity 7.7 Acquisition and ownership of buildings in the section for AFK Property.		
7.7 Acquisition and ownership of buildings (CCA)	Eligibility	See description of activity 7.7 regarding CCM above. The cli- mate risk assessment and expenditure plan for the property at Bedriftsveien 17 does not meet the requirements of Appendix A. As a result, the activity is not considered eligible under climate change adaptation.	Not eligible	
	Substantial contribution and DNSH	AFK Property have performed the alignment assessment as they are the legal owners of the property. Refer to assessment provided for activity 7.7 Acquisition and ownership of buildings in the section for AFK Property.		

Economic activity	Type of assessment	Interpretation and assessment	Conclusion
3.6 Manufacture of other low carbon technologies (CCM)	Eligibility	"Production of additive material powders" involves the devel- opment and operation of proprietary plasma processes to produce and sell spherical powders for application in Additive Manufacturing, Metal Injection Molding and Binder Jetting. The systems do not release constituents other than the powder itself and the plasma gases which consists of Argon, together with a secondary gas like helium, nitrogen, hydrogen or oxygen. None of these gases are considered critical for the GHG emis- sions. The Additive Manufacturing powders aim to increase resource efficiency along the value chain reducing GHG emis- sions related to those resources (materials, manufacturing, warehousing, transportation and the utilization of the finished product).	Aligned

Substantial
contribution

Additive materials (AM) have the capacity to manufacture products with less GHG emissions than traditional manufacturing methods. Specifically, the additive manufacturing technologies can cut carbon emissions in four areas: materials, manufacturing, warehousing, and transportation.

Materials: AM uses only the material necessary to create the finished product. It does not generate any significant amount of scrap. For instance, Airbus claims an average fly-to-buy ratio of 10:1, while a ratio closer to one is achievable with AM, especially if the unused powder can be recycled.

Manufacturing: AM enable engineers to design parts that are lighter, stronger, and more efficient than their traditional counterparts. This makes products manufactured using AM technologies more efficient in its intended application, e.g. less fuel consumption and associated emissions for any vehicle as it is lighter than its traditional counterpart. This applies especially for small production runs and custom-made parts, provided that design optimization for AM has been achieved.

Warehousing: Because 3D printing enables on-demand production of parts and products, it can help reducing the need for storage space and, consequently, the energy once required to control temperature, humidity, and lighting of larger warehouses. This leads to a lower overall carbon footprint considering that between 5.5% and 13% of the global GHG emissions are caused by logistic activities in supply chains.

Transportation: Locations with a 3D printer can become factories that makes products closer to end users. It dramatically reduces the need to move finished products over great distances. The impact on GHG emission can be significant since transport sector accounts for over 23% of all CO2 emissions globally.

Laser powder bed fusion, metal injection molding, electron-beam powder bed fusion and direct energy deposition are considered as equivalent in terms of GHG footprint. These AM technologies are considered as the counterpart of conventional machining. When considering the entire manufacturing chain, AM processes are found to be up to 87 % less energy consuming, CO2 polluting and cheaper in respect to environmental cost compared to conventional machining.

It must also be noted that AM can produce parts that conventional machining often cannot, which is accounted for in the comparison. While AM can reduce buy-to-fly ratio by more than 75%, design optimization for AM can reduce parts weight by another 65%.

Life-cycle GHG emission savings are based on an AMGTA report. As such, the criteria related to savings being calculated in accordance with Commission Recommendation 2013/179/EU and verified by an independent third party are considered met.

Eligibility

26

11	5.0	Eligibility	FIGURCHOILOI
)-	Manufacture		Inductively Co
S	of other		ment such as p
al	low carbon		tems. The turr
	technologies		materials and
	(CCM)		tion). The syste
n			material itself
g			together with a
e			or oxygen. Nor
d			GHG emission
it			materials com
or			usually gener
			improve the ef
at			
or .		Substantial	Induction plas
n of		contribution	ferent nowder-
		Contribution	i e nano nowd
- -			available in dif
 n			put required Ir
			onts other the
;- 			
-			consists of Alg
			nitrogen, nyuro
h			
d			technology, th
>-			units will have
n			technology wh
1-			other technolo
			functions as ir
			powder sphero
h			lekna are not f
S			itors offering a
it			As of today, Te
У			savings analys
У			ment is not co
t			bution require
e			Sucorrequirer
		DNSH	Since the econ
			stantial contrib
			teria has not ye

DNSH

CCA: Climate risk assessment is performed in accordance with appendix A. The assessment is based on a TCFD analysis con ducted in 2021, performed at company level. A roadmap has been developed and Tekna is currently quantifying the financia impact and developing a mitigation plan.

W&M: A water impact assessment has been conducted i accordance with Appendix B. Water is filtered before goin back to wastewater in the sewers. Each year, quality checks an performed on the wastewater coming from Tekna Advance Materials Inc, its powder production facilities, to confirm that the guality of the filtered water meets the requirements for wastewater of the city of Sherbrooke.

CE: Tekna assess the availability and adopts techniques that support reuse and use of secondary raw materials, design fo high durability, recyclability, disassembly and adaptability of products, waste management and traceability of substances of concern throughout the lifecycle of the manufactured products. Metals have a high recyclability potential and aluminiur alloys in the production of ingots contain 6% of recycled materials. Tekna's next step is to run quality test on recycled feed stock to ensure it meets the quality requirements of clients.

P&C: An assessment has been conducted in accordance with Appendix C. Tekna has compiled a list of the controlled an banned substances and chemicals in the regulations and direct tives named in Appendix C and inquired the laboratory tear and building manager to confirm that all substances and chem icals used in Tekna's operations are conform with the laws.

B&E: An assessment has been conducted in accordance with Appendix D. Tekna performed a biodiversity assessment in its operations and its top 25 suppliers in 2023. The assessmen found that Tekna's facilities in France are near 4 criticall endangered species and Tekna's suppliers are near 41 critically endangered species. In the upcoming years, Tekna will conduc an investigation to assess impact on those species. For mor information, refer to Tekna's 2023 GRI report (GRI 304).

"Production of turnkey plasma systems" involves production of Eligible, upled Plasma systems, including auxiliary equip- not aligned power feeders, probes and powder washing sysnkey plasma systems are used to develop new optimize material characteristics (spheroidizaems do not release constituents other than the and the plasma gases which consists of Argon, a secondary gas like helium, nitrogen, hydrogen, ne of these gases are considered critical for the ns. It is an efficient way of developing advanced npared to alternative chemical processes that rate byproducts. Advanced materials aim to fficiency of the finished product.

> ma units sold to customers are designed for dif--related applications that fall into two categories, der synthesis or powder spheroidization, and are fferent power levels depending on the through-In all cases, the systems do not release constitun the powder itself and the plasma gases which gon, together with a secondary gas like helium, ogen or oxygen. None of these gases are considor the GHG emissions. As an electricity-intensive he energy mix used to power induction plasma a significant impact on carbon footprint of this nich is otherwise a clean technology. There are no gies on the market that can perform the same nduction plasma for nano powder synthesis or bidization. This is confirmed in tender calls, where facing competing technologies but only competan induction plasma solution similar to ours.

> ekna does not have a life-cycle GHG emission sis available. Therefore, the plasma systems segonsidered compliant with the substantial contriment.

> nomic activity does not fulfill the criteria for subbution, a complete assessment of the DNSH criet been carried out.

3.6	Eligibility
Manufacture	
ofother	
low carbon	
technologies	
(CCM)	

With "Production of PlasmaSonic windtunnels", Tekna designs, Aligned manufactures, and sells the PlasmaSonic Product line, which is a wind tunnel that simulates hypersonic conditions to enable scientific research, for instance space tourism and hypersonic flight. Providing the opportunity to test materials developed for space in a controlled environment with precise instruments, significantly reduces emissions compared to testing these materials in space, by avoiding combustion of fuel and contamination in the atmosphere (metal particles creating Greenhouse effect).

Substantial contribution Ground testing facilities, combined with computational models, simulate space re-entry conditions. Their purpose is to develop heat shields made of specialized materials. Different ground testing technologies exist, each with specific operational ranges (temperature, velocity, heat flux, test duration, gas composition, etc.) and minimum overlaps between them. Considering their differences in operational ranges, they can hardly be compared in terms of GHG emissions. Therefore, flight testing is the counterpart of Tekna's Plasmasonic technology in terms of GHG emissions for developing supersonic vehicles.

Flight testing involve launching sounding rockets at very high altitude or even in space. While data on large rockets emissions are available in the literature, sounding rockets are rather niche and very little has been published. Depending on the fuel used, combustion by-products like CO2, soot, NOx and water vapor are generated in various concentrations, along with unburnt fuel expelled. The fact that important amounts of combustion by-products are released in a short period of time and in a concentrated area up to >15km altitude (in opposition with commercial aircraft making 1000s km flight at <10km altitude) can severely impact wetlands and habitat nearby launching pads. Furthermore, spaceflight is the only direct human cause of pollution above about 20 km altitude. Scientists recently found the stratosphere is peppered with particles containing metals vaporized from the re-entry of satellites and rocket boosters. Also, water vapor released in the stratosphere can act as a greenhouse gas while black soot particles can linger for years, acting like an umbrella, absorbing solar radiation.

As such, the Plasmasonic windtunnels are believed to provide substantial life-cycle GHG emission savings compared to the best performing alternative. However, the substantial contribution criteria are not considered met due to the lack of documentation verified by a third party demonstrating life-cycle GHG emission savings.

DNSH

W&M: A water impact assessment has been conducted in accordance with Appendix B. Water is filtered before going back to wastewater in the sewers. Each year, a quality check is performed on the wastewater coming from the Tekna Plasma Systems facility to confirm that the quality of the filtered water meets the requirements for wastewater of the city of Sherbrooke.

CE: Tekna assess the availability and adopts techniques that support reuse and use of secondary raw materials, design for high durability, recyclability, disassembly and adaptability of products, waste management and traceability of substances of concern throughout the lifecycle of the manufactured products. PlasmaSonic wind tunnels is a new product, with expected lifespan of more than 25 years. Further, it is estimated that more than 90% of the components can be recycled.

P&C: An assessment has been conducted in accordance with Appendix C. Tekna has compiled a list of the controlled and banned substances and chemicals in the regulations and directives named in Appendix C and inquired the laboratory team and building manager to confirm that all substances and chemicals used in Tekna's operations are conform with the laws.

B&E: An assessment has been conducted in accordance with Appendix D. Tekna performed a biodiversity assessment in its operations and its top 25 suppliers in 2023. The assessment found that Tekna's facilities in France are near 4 critically endangered species and Tekna's suppliers are near 41 critically endangered species. In the upcoming years, Tekna will carry out an assessment to analyze the impact on those species. For more information, refer to Tekna's 2023 GRI report (GRI 304).

CCA: Climate risk assessment is performed in accordance with appendix A. The assessment is based on a TCFD analysis conducted in 2021, performed at company level. A roadmap has been developed and Tekna is currently quantifying the financial impact and developing a mitigation plan.

3.6 Manufacture of other low carbon technologies (CCM)	Eligibility	With "development and production of nano materials for Multi-Layer Ceramic Capacitors (MLCC)", Tekna develops and operates their own proprietary plasma to produce and sell nano-sized metal powders for application in MLCC. The sys- tems do not release constituents other than the powder itself (typically the same material as the feedstock or precursor introduced in the system) and the plasma gases which consists of Argon, together with a secondary gas like helium, nitrogen, hydrogen or oxygen. None of these gases are considered criti- cal for the GHG emissions. With its nano-sized materials Tekna enables electrification through MLCC (downsizing electrical components), thereby enabling GHG emission reductions.	Eligible
	Substantial contribution	The documentation requirement regarding life-cycle GHG emissions calculation has not been fulfilled, hence the substan- tial contribution criteria is considered not met.	
	DNSH	Since the economic activity does not fulfill the criteria for sub- stantial contribution, a complete assessment of the DNSH cri- teria has not yet been carried out.	
3.6 Manufacture of other low carbon technologies (CCA)	Eligibility	See description of the activities "Production of additive material powders", "Production of turnkey plasma systems", "Production of PlasmaSonic windtunnels" and "development and produc- tion of nano materials for Multi-Layer Ceramic Capacitors (MLCC)" related to activity 3.6 regarding CCM above. A cli- mate risk assessment and roadmap has been carried out, but an expenditure plan that complies with the requirements of Appendix a is currently not in place. As such, the economic activities are not considered eligible under climate change adaptation.	Not eligible
	Substantial contribution and DNSH	Since the economic activity is not considered eligible for the environmental objective Climate Change Adaptation, no fur- ther assessment of technical screening criteria has been car- ried out.	

6. Minimum Safeguards

Minimum safeguard requirements are defined in article 18 of the EU Taxonomy regulation. According to which, an undertaking shall implement procedures to ensure the alignment with:

- The OECD Guidelines for Multinational Enterprises (OECD Guidelines for MNE)
- The UN Guiding Principles on Business and Human Rights (UNGPs), including the principles and rights set out in the eight fundamental conventions identified in the Declaration of the International Labour Organisation on Fundamental Principles and Rights at Work
- The International Bill of Human Rights

When assessing compliance, the Platform on Sustainable Finance's final report on minimum safeguards and the principle of 'do no significant harm' referred to in point (17) of Article 2 of Regulation (EU) 2019/2088 were considered.

Arendals Fossekompani's Group Compliance Handbook incorporates the OECD Guidelines for MNE and the OECD Due Diligence Guidance for Responsible Business Conduct (OECD DD Guidance), which are in line with the UNGPs. The Group's policies, such as the Code of Conduct and the Supplier Code of Conduct which can be found on our website, includes our policy on the internationally recognized human rights, that includes the International Bill of Human Rights and the ILO core conventions on Fundamental Principles and Rights at Work.

The Compliance Handbook requires all companies in the Group to perform companywide risk assessments, covering Responsible Business Conduct Principles as defined and interpreted by the OECD Guidelines for MNE. Due diligence on Responsible Business Conduct Principles shall be performed according to the OECD DD Guidance. Our due diligence process covers topics such as social and employee matters, human rights, anti-bribery and anti-corruption, tax, consumer rights and competition. To ensure that the procedure is incorporated, Arendals Fossekompani and portfolio companies' policies and procedures shall be easily available to employees and other relevant stakeholders. Furthermore, all employees shall receive onboarding training, which includes relevant topics addressed in Arendals Fossekompani's Ethical Guidelines and the Compliance Handbook, and information about the whistleblowing channel. In addition to company-wide risk assessments, companies subject to the Transparency Act must perform risk assessments in line with the regulatory requirement. This includes requirements such as providing information about adverse impacts and implemented or planned measures to cease or mitigate these impacts.

Not insignificant breaches of the business conduct principles, as defined in AFK's Ethical Guidelines, shall be reported to AFK. We are not aware of any such breaches. Further, we have not been convicted in court nor contacted by the OECD National Contact Points or the Business and Human Rights Resource Center with allegations on any of the topics covered by the minimum safeguards.

Based on our assessment, we believe that the Compliance Handbook and the Groups policies meet the requirements of the minimum social safeguards and that we have established adequate human rights due diligence processes as outlined in the UNGPs and OECD Guidelines for MNE. As such, we believe the AFK Group complies with the minimum social safeguards requirement. For further details, please refer to our statement on Ethical Business Conduct, which can be found in Chapter 4 Sustainability in the Annual Report 2023, as well as our account on the Norwegian Transparency Act at our webpage.

7. Accounting Policies and Contextual Information About the KPIs

Our accounting methodology for calculating and determining the key performance indicators (KPIs) disclosed by the EU Taxonomy Regulation follows the requirements in the EU Commission Delegated Regulation 2178/2021. In line with the regulation, AFK reports on turnover, CapEx and OpEx for aligned, and eligible, not aligned economic activities.

Throughout 2023, Arendals Fossekompani has developed and refined its methodology for calculating the KPIs in line with the developments and new guidance from the European Commission regarding the EU Taxonomy Regulation. The approach and methodologies used for calculation of the KPIs have been adjusted, to enable accurate reporting on all six of the environmental objectives. We will continue refining the approach to facilitate assurance for next year.

For economic activities that have the potential to contribute to multiple environmental objectives, eligibility has been assessed against each objective, as well as alignment for climate change mitigation and climate change adaptation. For the purpose of allocating KPIs to a respective environmental objective, activity-specific considerations have been evaluated, in addition to AFK's overall ESG strategy. Aligned with AFK's strategy, KPIs have been allocated to Climate Change Mitigation in cases where an activity is eligible or aligned towards multiple objectives.

Intercompany transactions have been eliminated in the KPIs. Further, joint ventures and associated companies are not included in KPIs, as they are not consolidated in the group's financial statements.

DOUBLE COUNTING

To ensure compliance with the EU Taxonomy Regulation, preventive measures have been taken to avoid any dual allocation of the numerator of turnover, CapEx, and OpEx, i.e., avoiding double counting. Where relevant, companies within the Group have used allocation keys based on available data, for calculating KPIs, including turnover, CapEx, and OpEx. In some cases, non-financial metrics have been used as the basis for the allocation key, however in situations where such metrics are not available, financial metrics have been used (revenue-based).

During 2023, AFK has not issued new or distributed previously issued green bonds with the purpose of financing Taxonomy-aligned economic activities. Hence, AFK believes that there is no need for an adjusted turnover KPI to avoid double counting. All intercompany transactions have been identified and eliminated from the KPIs.

CALCULATION OF TURNOVER

The share of aligned, and eligible, not aligned turnover is calculated as the net turnover derived from products and services associated with aligned, and eligible, not aligned turnover, divided by the Group's total net turnover, as defined in the EU Commission Delegated Act 2178/2021.

The EU Taxonomy defines turnover as revenue recognized pursuant to IAS 1 paragraph 82(a). For Arendals Fossekompani's Group and its portfolio companies, IFRS 15 Revenues from contracts with customers constitutes most of the EU Taxonomy turnover. This is revenue associated with activities such as transmission and distribution of electricity, electricity generation from hydropower, manufacture of other low carbon technologies, sale of spare parts, and infrastructure enabling low-carbon road transport and public transport. See note 1 for the related information in the financial statement. Turnover from economic activities contributing to climate change adaptation that are not enabling are excluded from the KPI in line with the Disclosure Delegated Act annex I, section 1.1.1. Turnover from governmental grants has been excluded, and there has not been revenue from non-current assets held for sale during 2023. There have not been any governmental grants or revenue from non-current assets held for sale during 2023. For the most part, turnover is determined using project or activity codes directly linked to specific items in the financial accounts.

The aligned and eligible, but not aligned turnover for 2023 are broken down as follows:

TURNOVER	TOTAL (IN TNOK)
Revenue from contracts with customers	3,166,420
Lease revenue	C
Other sources of income	77,089
Sum	3,243,509

040).

CALCULATION OF CAPEX

CapEx covers additions to tangible and intangible assets during the financial year considered before depreciation, amortisation and any re-measurement, including those resulted from revaluations and impairments. As such, CapEx covers costs accounted in the following IFRS-standards: IAS 16 Property, Plant and Equipment, IAS 38 Intangible Assets, IAS 40 Investment Property, IAS 41 Agriculture and IFRS 16 Leases. These standards have served as basis for Arendals Fossekompani's allocation of CapEx to the denominator and numerator. Goodwill acquired from business combinations are not included. See note XX, YY and ZZ for the related information in the financial statement.

Some capital expenditures are specific to single activities and are recorded on project basis, for instance research and development and new constructions. Where specific information is not available, capital expenditures are allocated using a financial metric, namely a revenue-based allocation key. Currently, Arendals Fossekompani does not have any material capital expenditures related to a CapEx plan.

The aligned and eligible, but not aligned CapEx for 2023 are broken down as follows:

CAPEX

Additions to property, plant and equipment Additions to internally generated intangible assets Additions to investment properties acquired or recognized in the Additions to capitalized right-of-use assets Sum

tions.

CALCULATION OF OPEX

The share of Arendals Fossekompani's aligned, and eligible, not aligned OpEx is calculated as OpEx associated with aligned, and eligible, not aligned economic activities divided by Arendals Fossekompani's total OpEx, as defined in the EU Commission Delegated Act 2178/2021.

OpEx is defined as direct non-capitalized costs that relate to research and development, building renovation measures, short term lease, maintenance and repair and other direct expenditures relating to the day-to-day servicing of assets to property, plant and equipment by the undertaking or third party to whom activities are outsourced that are necessary to ensure the continued and effective functioning of such assets.

All intercompany revenue have been eliminated from the KPI and related information. In total, turnover pursued for AFK's internal consumption amounts to TNOK 11 178. This is related to buildings rented from AFK Property to Volue and ENRX (constituting TNOK 8 139) and ENRX's internal lease of equipment (constituting TNOK 3

The share of Arendals Fossekompani's aligned, and eligible, not aligned CapEx is calculated as CapEx associated with aligned, and eligible, not aligned economic activities divided by Arendals Fossekompani's total CapEx, as defined in the EU Commission Delegated Act 2178/2021.

The numerator of the CapEx KPI consists of capital expenditure directly associated with processes and assets of Taxonomy-eligible and aligned economic activities, as defined by letter (a) in the EU Commission Delegated Act 2178, section 1.1.2.2., which when consolidated, amounts to a grand total of TNOK 660 262.

	TOTAL (IN TNOK)
	362,778
	71,119
e carrying amount	0
	86,295
	520,191

None of the reported CapEx for 2023 are related to comes from business combina-

Other direct expenditures relating to the day-to-day servicing of items of property plant and equipment includes expenditures such as repair of machines, non-capitalized costs related to research and development, and other direct costs related to the daily service of computer equipment, software and cloud infrastructure.

Salary costs related to research and development, and maintenance and repair, represents a large share of the expenditures in the OpEx KPI. For salary costs that is only partially aligned with the OpEx definition, allocation keys have been applied to allocate correct expenditures. In instances where maintenance and repairs are performed by employees, an allocation key have been used, derived from job descriptions. In order to determine adequate allocation keys, data from financial cost centers have been used where possible. Where sufficient data is not available, best estimates are used. To the extent possible, the allocation keys have been based on non-financial metrics, however, in some cases such metrics has not been identified and a revenue-based key have been applied.

The numerator of the OpEx KPI consists of costs directly associated with processes and assets of Taxonomy-eligible and aligned economic activities, as defined by letter (a) in the EU Commission Delegated Act 2178, section 1.1.3.2, which when consolidated, amounts to a grand total of TNOK 89 054. Currently, Arendals Fossekompani does not have any material operational expenditures related to a CapEx plan.

As a result of Arendals Fossekompani having developed and refined its understanding of the EU Taxonomy's definition of OpEx, changes have been made to the calculation of the KPI from the previous year. The reported decrease of aligned, and eligible, not aligned OpEx of 18% and 34% respectively, compared to the voluntary reporting in 2022, reflects the adjustments made to the calculation methodology.

8. Future Work

We will continue retrieving and improving relevant documentation and assessing the technical screening criteria adopted by the EU in June 2023. We will also analyse existing information to consider if it can support an expansion of allocation keys based on non-financial metrics. Further, we acknowledge that the EU Taxonomy is still evolving, where future FAQs and publications from the European Commission may shed new light on the interpretations substantiating this year's assessment. Having assessed eligibility for all environmental objectives for 2023, we are well positioned to expand our reporting to alignment for new activities and objectives in 2024.

TEMPLATE 1: NUCLEAR AND FOSSIL GAS RELATED ACTIVITIES

Nuc	Nuclear energy related activities					
1.	The undertaking carries out, funds or has exposures to research, development, demonstration and deployment of innovative electricity generation facilities that produce energy from nuclear processes with minimal waste from the fuel cycle	No				
2.	The undertaking carries out, funds or has exposures to construction and safe operation of new nuclear installations to produce electric- ity or process heat, including for the purposes of district heating or industrial processes such as hydrogen production, as well as their safety upgrades, using best available technologies.	No				
3.	The undertaking carries out, funds or has exposures to safe operation of existing nuclear installations that produce electricity or process heat, including for the purposes of district heating or industrial processes such as hydrogen production from nuclear energy, as well as their safety upgrades.	No				

Fossil gas related act

- 4. The undertakin construction or that produce el
- 5. The undertakin construction, re cool and power
- 6. The undertakin refurbishment produce heat/c

IV/	т	60
		00

ng carries out, funds or has exposures to r operation of electricity generation facilities lectricity using fossil gaseous fuels.	No
ng carries out, funds or has exposures to efurbishment, and operation of combined heat/ r generation facilities using fossil gaseous fuels.	No
ng carries out, funds or has exposures to construction, and operation of heat generation facilities that cool using fossil gaseous fuels.	No

9. TURNOVER KPI			
Financial year 2023		Year	
(1)	(2)	(3)	(4)
		NOK	%

A. TAXONOMY-ELIGIBLE ACTIVITIES A.1. Environmentally sustainable activities (Taxonomy-aligned) CCM 4.9 296 424 750 Transmission and distribution of electricity Provision of IT/OT data-driven solutions for leakage reduction WTR 4.1 199 761 000 CCM 4.5 Electricity generation from hydropower 510 240 490 CCA 7.2 Renovation of existing buildings Manufacture of other low carbon technologies CCM 3.6 201165573 Turnover of environmentally sustainable activities (Taxonomy-aligned) (A.1) 1207 591 813 Of which enabling 697 351 323

A.2. Taxonomy-Eligible but not environmentally sustainable activities (not Taxonomy-aligned activities)

Acquisition and ownership of buildings	CCM 7.7	6 239 776	0,1%
Computer programming, consultancy and related activities	CCA 8.2	0	0,0 %
Data-driven solutions for GHG emissions reductions	CCM 8.2	36 215 978	0,7 %
Provision of IT/OT data-driven solutions	CE 4.1	69 525 000	1,3 %
Manufacture of other low carbon technologies	CCM 3.6	1264 072 862	23,3 %
Infrastructure enabling low-carbon road transport and public transport	CCM 6.15	2069007	0,0 %
Sale of spare parts	CE 5.2	179 190 455	3,3 %
Close to market research, development and innovation	CCA 9.1	13 370 706	0,2 %
Product-as-a-service and other circular use- and result-oriented service models	CE 5.5	50 550 500	0,9 %
Emergency services	CCA 14.1	359 236 800	6,6 %
Construction of new buildings	CCM 7.1 / CE 3.1	11	0,0 %
Construction of new buildings	CCA 7.1/ CCM 7.1/ CE 3.1	0	0,0 %
Manufacture of batteries	CCM 3.4	55 054 530	1,0 %
Storage of electricity	CCM 4.10	47 576	0,0 %
Data processing, hosting and related activities	CCM 8.1	343 925	0,0 %
Turnover of Taxonomy-eligible but not environmentally sustainable activities (not Taxonomy-aligned activities) (A.2)		2 035 917 126	37,6 %
A. Turnover of Taxonomy-eligible activities (A.1. + A.2.)		3 243 508 938	59,9 %
B. TAXONOMY-NON-ELIGIBLE ACTIVITIES			
Turnover of Taxonomy-non-eligible activities		2 174 076 136	40,1%
TOTAL		5 417 585 074	100%

Subst	tantial Con	tribution Cr	iteria		DNSH	criteria (Does No	t Signifio	cantly H	arm)	(17)	(18)	(19)	(20)
(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)				
Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	%	E	Т
Ν	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
N/EL	Y	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
Ν	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y			
Y	N/EL	N/EL	Ν	N/EL	Y	Y	Y	Y	Y	Y	Y			
N/EL	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
0,0%	3,7%	0,0%	0,0%	0,0%	Υ	Y	Y	Y	Y	Y	Υ			
0,0%	0,0%	0,0%	0,0%	0,0%	Y	Y	Y	Y	Y	Y	Y		E	
					Y	Y	Y	Y	Y	Y	Y			Т
	Subs (6) Y; N; N/EL N N/EL N/EL 0,0%	Substantial Con (6) (7) Y; N; N/EL Y; N; N/EL Y Y; N; N/EL N N/EL N/EL Y N/EL Y N/EL Y N/EL N/EL N/EL N/EL 0,0% 3,7%	Substantial Contribution Cr (6) (7) (8) Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL N N/EL N/EL N/EL Y N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL O,0% 3,7% 0,0%	Substantial Contribution Criteria (6) (7) (8) (9) Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL N/EL N/EL N/EL N/EL O,0% 3,7% 0,0% 0,0%	Substantial Contribution Criteria (6) (7) (8) (9) (10) Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL N N/EL N/EL N/EL N/EL N/EL N/EL N/EL N/EL N	Substantial Contribution Criteria DNSH (6) (7) (8) (9) (10) Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y/N Y; N; N/EL Y; N; N/EL Y; N; N/EL Y; N; N/EL Y/N N/EL N/EL N/EL N/EL N/EL Y/N N/EL N/EL N/EL N/EL N/EL Y N/EL N/EL N/EL N/EL Y Y N/EL N/EL	Substantial Contribution Criteria DNSH criteria (1) (6) (7) (8) (9) (10) (11) (12) Y; N; N/EL Y/N Y/N Y; N; N/EL Y/N Y/N N/EL N/EL N/EL N/EL N/EL Y Y N/EL N/EL N/EL N/EL<	Substantial Contribution Criteria DNSH criteria (Does No (6) (7) (8) (9) (10) (11) (12) (13) Y; N; N/EL Y/N Y/N Y/N N/EL Y; N; N/EL N/EL N/EL Y/N Y/N Y/N N/EL N/EL N/EL N/EL N/EL Y Y N/EL N/EL N/EL N/EL N/EL Y Y N/EL N/EL N/EL N/EL Y Y Y Q,00%<	Substantial Contribution Criteria DNSH criteria (Joes Not Signified Not	Substantial Contribution Criteria DNSH criteria (Does Not Significantly H (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Y; N; N/EL Y/N Y/N Y/N Y/N Y/N Y/N Y/N N/EL N/EL N/EL N/EL N/EL N/EL Y/N Y/N Y/N Y/N Y/N N/EL N/EL N/EL N/EL N/EL N/EL Y Y Y Y Y N/EL N/EL N/EL N/EL N/EL N/EL Y Y Y Y Y N/EL N/EL N/EL N/EL N/EL N/EL Y	Substantial Contribution Criteria DNSH criteria (Does Not Significantly Harm) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) Y; N; N/EL Y, N; N/EL Y/N Y/N	Substantial Contribution Criteria DNSH criteria (Does Not Significantly Harmanna Significant Significant Harmanna Significant Significant Harmanna Signi Harmanna Significant Harmanna Significant Harmann	Substantial Contribution Criteria DNSH criteria (Dees Not Significantly Harmanna and Significant A	Number of the transmission of the transmission of transmissi definit transmission of transmission of transmission

| EL; N/EL |
|----------|----------|----------|----------|----------|----------|
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | EL | N/EL | N/EL | EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| 25,2% | 7,9% | 0,0% | 0,0% | 5,5% | 0,0% |
| 43,8% | 7,9% | 3,7% | 0,0% | 5,5% | 0,0% |
| | | | | | |

10. PROPORTION	OFTURNOVER	PER OBJECTIVE
----------------	------------	---------------

	Proportion of turnover / Total	turnover
Ojective	Taxomy-aligned per objective	Taxonomy-eligible per objective
CCM	18,6%	25,2%
CCA	0,0%	6,9%
WTR	3,7%	0,0%
CE	0,0%	5,5%
PPC	0,0%	0,0%
BIO	0,0%	0,0%

- (1) Economic Activities
- (2) Code
- (3) Turnover
- (4) Proportion of Turnover {2023}
- (5) Climate Change Mitigation
- (6) Climate Change Adaptation
- (7) Water

- (8) Pollution
 - (9) Circular Economy

(13) Water

(14) Pollution

- (10) Biodiversity
- (11) Climate Change Mitigation
- (12) Climate Change Adaptation
- (17) Minimum Safeguards (18) Proportion of Taxonomy-aligned (A.1.)

(15) Circular Economy

(16) Biodiversity

5,5%

3,7%

9,4%

0,0%

3,7%

22,3%

57,7%

0,0%

0

0

- or eligible (A.2.) turnover, year 2022
- (19) Category (enabling activity)
- (20) Category (transitional activity)

Of which transitional

11. CAPEX KPI			
Financial year 2023		Year	
(1)	(2)	(3)	(4)
		NOK	%

A. TAXONOMY-ELIGIBLE ACTIVITIES A.1. Environmentally sustainable activities (Taxonomy-aligned) CCM 4.9 Transmission and distribution of electricity Provision of IT/OT data-driven solutions for leakage reduction WTR 4.1 CCM 4.5 Electricity generation from hydropower CCA 7.2 Renovation of existing buildings Manufacture of other low carbon technologies CCM 3.6 CapEx of environmentally sustainable activities (Taxonomy-aligned) (A.1)

A.2. Taxonomy-Eligible but not environmentally sustainable activities (not Taxonomy-aligned activities)

Acquisition and ownership of buildings	CCM 7.7	0	0,0%
Computer programming, consultancy and related activities	CCA 8.2	1 428 841	0,2%
Data-driven solutions for GHG emissions reductions	CCM 8.2	19 522 115	2,3%
Provision of IT/OT data-driven solutions	CE 4.1	9 014 000	1,1%
Manufacture of other low carbon technologies	CCM 3.6	93 355 647	11,0%
Infrastructure enabling low-carbon road transport and public transport	CCM 6.15	0	0,0%
Sale of spare parts	CE 5.2	7 279 552	0,9%
Close to market research, development and innovation	CCA 9.1	8786284	1,0%
Product-as-a-service and other circular use-and result-oriented service models	CE 5.5	129 300	0,0%
Emergency services	CCA 14.1	6 077 100	0,7%
Construction of new buildings	CCM 7.1/ CE 3.1	217 762 936	25,7%
Construction of new buildings	CCA 7.1/ CCM 7.1/ CE 3.1	0	0,0%
Acquisition and ownership of buildings	CCM 7.7	3 804 662	0,4%
Manufacture of batteries	CCM 3.4	7 759 556	2,4%
Storage of electricity	CCM 4.10	4 059 315	0,5%
Data processing, hosting and related activities	CCM 8.1	388 488	0,0%
Turnover of Taxonomy-eligible but not environmentally sustainable activities (not Taxonomy-aligned activities) (A.2)		379 367 797	46,3%
A. Turnover of Taxonomy-eligible activities (A.1. + A.2.)		520 191 096	63,0%
B. TAXONOMY-NON-ELIGIBLE ACTIVITIES			
Turnover of Taxonomy-non-eligible activities		325 808 904	37,0%
TOTAL		846 000 000	100%

	Substantial Contribution Criteria						DNSH criteria (Does Not Significantly Harm)					(17)	(18)	(19)	(20)
(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)				
Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	%	E	Т
Y	N	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
N/EL	N/EL	Y	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
Y	Ν	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y			
Ν	Y	N/EL	N/EL	Ν	N/EL	Y	Y	Y	Y	Y	Y	Y			
Y	N/EL	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
11,5%	0,4%	4,7%	0,0%	0,0%	0,0%	Y	Y	Y	Y	Y	Y	Y			
92,0%	0,0%	0,0%	0,0%	0,0%	0,0%	Y	Y	Y	Y	Y	Y	Y		E	
0,0%						Y	Y	Y	Y	Y	Y	Y			Т

| EL; N/EL |
|----------|----------|----------|----------|----------|----------|
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | EL | N/EL |
| EL | EL | N/EL | N/EL | EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| 42,4% | 4,8% | 0,0% | 0,0% | 1,9% | 0,0% |
| 54,0% | 5,2% | 4,7% | 0,0% | 1,9% | 0,0% |

12. PROPORTION OF CAPEX PER OBJECTIVE

	Proportion of CapEx / Total	CapEx
Ojective	Taxomy-aligned per objective	Taxonomy-eligible per objective
CCM	11,5%	42,4%
CCA	0,4%	1,9%
WTR	4,7%	0,0%
CE	0,0%	27,7%
PPC	0,0%	0,0%
BIO	0,0%	0,0%

- (1) Economic Activities
- (2) Code
- (3) CapEx
- (4) Proportion of CapEx {2023}
- (5) Climate Change Mitigation
- (6) Climate Change Adaptation
- (7) Water

- (8) Pollution
 - (9) Circular Economy
 - (10) Biodiversity
 - (11) Climate Change Mitigation

 - (12) Climate Change Adaptation
 - (13) Water
 - (14) Pollution

(15) Circular Economy

- (16) Biodiversity
- (17) Minimum Safeguards
- (18) Proportion of Taxonomy-aligned (A.1.)

38 242 841

40 077 000

8 041 243

3 248 627

51 213 588

140 823 299

129 533 429

0

4,5%

4,7%

1,0%

0,4%

6,1%

16,6%

92,0%

0,0%

- -eligible (A.2.) CapEx, year 2022
- (19) Category (enabling activity)
- (20) Category (transitional activity)

Of which enabling

Of which transitional

13. OPEX KPI			
Financial year 2023		Year	
(1)	(2)	(3)	(4)
		NOK	%

A 1 Environmentally sustainable activities (Taxonomy-aligned)			
All Environmentally sustainable activities (Taxonomy-aligned)			
Transmission and distribution of electricity	CCM 4.9	8 489 295	1,6%
Provision of IT/OT data-driven solutions for leakage reduction	WTR 4.1	9 746 000	1,9%
Electricity generation from hydropower	CCM 4.5	8 279 983	1,6%
Renovation of existing buildings	CCA 7.2	0	0,0%
Manufacture of other low carbon technologies	CCM 3.6	9 085 548	1,8%
OpEx of environmentally sustainable activities (Taxonomy-aligned) (A.1)		35 600 826	6,9%
Of which enabling		27 320 843	76,7%
Of which transitional		0	0,0%

A.2. Taxonomy-Eligible but not environmentally sustainable activities (not Taxonomy-aligned activities)

Acquisition and ownership of buildings	CCM 7.7	6 153 580	1,2%
Computer programming, consultancy and related activities	CCA 8.2	5 495 367	1,1%
Data-driven solutions for GHG emissions reductions	CCM 8.2	36 000	0,0%
Provision of IT/OT data-driven solutions	CE 4.1	310 000	0,1%
Manufacture of other low carbon technologies	CCM 3.6	22 521 955	4,4%
Infrastructure enabling low-carbon road transport and public transport	CCM 6.15	263 083	0,1%
Sale of spare parts	CE 5.2	1572899	0,3%
Close to market research, development and innovation	CCA 9.1	0	0,0%
Product-as-a-service and other circular use-and result-oriented service models	CE 5.5	131 300	0,0%
Emergency services	CCA 14.1	6 827 600	1,3%
Construction of new buildings	CCM 7.1/ CE 3.1	92 171	0,0%
Construction of new buildings	CCA 7.1/ CCM 7.1/ CE 3.1	0	0,0%
Manufacture of batteries	CCM 3.4	3 951 937	0,8%
Storage of electricity	CCM 4.10	11	0,0%
Data processing, hosting and related activities	CCM 8.1	6 134 116	1,2%
OpEx of Taxonomy-eligible but not environmentally sustainable activities (not Taxonomy-aligned activities) (A.2)		53 490 019	10,4%
A. OpEx of Taxonomy-eligible activities (A.1. + A.2.)		89 090 845	17,3%
B. TAXONOMY-NON-ELIGIBLE ACTIVITIES			
OpEx of Taxonomy-non-eligible activities		426 022 481	82,7%
ΤΟΤΔΙ		515 113 326	100%

	Substantial Contribution Criteria					DNSH	DNSH criteria (Does Not Significantly Harm)				arm)	(17)	(18)	(19)	(20)	
(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)				
Y; N; N/E	EL Y; N;	N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y; N; N/EL	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	Y/N	%	E	Т
	Y	N	N/FI	N/FI	N/FI	N/FI	Y	Y	Y	Y	Y	Y	Y		F	
NI/F	-	N/EI	×	N/EL	N/EL	N/EL	· ·	· ·	v	· ·	v	· ·	· ·		F	
11/1						N/LL									-	
	Y	Ν	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y			
	N	Y	N/EL	N/EL	Ν	N/EL	Y	Y	Y	Υ	Υ	Y	Y			
	Υ	N/EL	N/EL	N/EL	N/EL	N/EL	Y	Y	Y	Y	Y	Y	Y		E	
5,0	% (0,0%	1,9%	0,0%	0,0%	0,0%	Y	Y	Υ	Y	Υ	Y	Y			
76,7	% (0,0%	0,0%	0,0%	0,0%	0,0%									E	
0,0	%															Т

| EL; N/EL |
|----------|----------|----------|----------|----------|----------|
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| N/EL | N/EL | N/EL | N/EL | EL | N/EL |
| N/EL | EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | EL | N/EL |
| EL | EL | N/EL | N/EL | EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| EL | N/EL | N/EL | N/EL | N/EL | N/EL |
| 7,6% | 2,4% | 0,0% | 0,0% | 0,4% | 0,0% |
| 12,6% | 2,4% | 1,9% | 0,0% | 0,4% | 0,0% |

14. PROPORTION OF OPEX PER OBJECTIVE

	Proportion of OpEx / Total OpEx	
Ojective	Taxomy-aligned per objective	Taxonomy-eligible per objective
ССМ	5,0%	7,6%
CCA	0,0%	2,4%
WTR	1,9%	0,0%
CE	0,0%	0,4%
PPC	0,0%	0,0%
BIO	0,0%	0,0%

- (1) Economic Activities
- (2) Code
- (3) OpEx
- (4) Proportion of OpEx {2023}
 (5) Climate Change Mitigation
 (6) Climate Change Adaptation
 (7) Water

- (8) Pollution (9) Circular Economy
- (10) Biodiversity
- (11) Climate Change Mitigation(12) Climate Change Adaptation

- (12) Water(13) Water(14) Pollution

(15) Circular Economy

- (16) Biodiversity
- (16) Biodiversity
 (17) Minimum Safeguards
 (18) Proportion of Taxonomy-aligned (A.1.) -eligible (A.2.) OpEx, year 2022
 (19) Category (enabling activity)
 (20) Category (transitional activity)

VISITING ADDRESS Langbryggen 9 4841 Arendal

POSTAL ADDRESS Box 280 4803 Arendal

+47 37 23 44 00 firmapost@arendalsfoss.no arendalsfossekompani.no

 $\ensuremath{\mathbb{C}}$ Arendals Fossekompani ASA. All Rights Reserved.